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Abstract

Deep convolutional neural networks (CNNs) have greatly improved the Face Recognition
(FR) performance in recent years. Almost all CNNs in FR are trained on the carefully
labeled datasets containing plenty of identities. However, such high-quality datasets are
very expensive to collect, which restricts many researchers to achieve state-of-the-art per-
formance. In this paper, a framework, called SeqFace, for learning discriminative face fea-
tures is proposed. Besides a traditional identity training dataset, the designed SeqFace can
train CNNs by using an additional dataset which includes a large number of face sequences
collected from videos. Moreover, the label smoothing regularization (LSR) and a new pro-
posed discriminative sequence agent (DSA) loss are employed to enhance the discrimina-
tion power of deep face features via making full use of the sequence data. Only with a
single ResNet model, the method achieves very competitive performance on several face
recognition benchmarks, including LFW, YTF, CFP, AgeDB, and MegaFace. The code and
model are publicly available at the website https://github.com/huangyangyu/SeqFace.
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1 INTRODUCTION

Face recognition is a very important research topic of com-
puter vision and pattern recognition in the past two decades
[1]. To advance face recognition, a large number of works have
been done on collecting face datasets, designing/learning face
descriptors, and training discriminative models. The early works
aim to collect facial images under the controlled conditions,
represent each facial image using hand-crafted features [2], and
evaluate face recognition algorithms on the small-scale datasets.
Recently, multiple large-scale face datasets are publicly available,
and deep convolutional neural networks (CNNs) are widely
used in face recognition (FR), due to their great discriminative
feature learning capability. The face feature is mainly trained
via two types of methods according to their loss functions in
CNN models. One method uses classification loss functions,
such as classical softmax loss [3, 4], and angular margin soft-
max loss functions [5–8]. The other type uses metric learning
loss functions, such as contrastive loss and triplet loss [9, 10].
In many recent CNNs for FR, two types of loss functions are

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2021 The Authors. IET Image Processing published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

usually combined together for learning face features. All these
loss functions aim to maximize the inter-identity variations and
minimize the intra-identity variations under a certain metric
space. No matter which loss functions are applied, these meth-
ods share the same type of the training data, called identity data
in the paper.

An identity dataset includes M faces of N identities, and
each face in the dataset is clearly labeled as the image of the ith

(0 ≤ i < N ) identity. Currently most public or private datasets
for training deep face features, such as CASIA [11], MS-Celeb-
1M [12] and CelebFaces [13], belong to identity datasets. How-
ever, a large-scale high-quality identity dataset is very expensive
to construct, since it could cost lots of effort and money. Iden-
tity data need two kinds of information: face image and iden-
tity annotation. Identities in most public and private datasets
are celebrities, because celebrity photos are rather easily crawled
and annotated from the Internet. However, a celebrity dataset
might be not a satisfied training dataset, if there are obvious dif-
ferences between the evaluated faces and the celebrity faces in
age, race, pose, and so on.

IET Image Process. 2021;1–11. wileyonlinelibrary.com/iet-ipr 1

https://orcid.org/0000-0002-2058-2373
mailto:zhang.fan.cn@ieee.org
https://github.com/huangyangyu/SeqFace
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-ipr


2 HU ET AL.

FIGURE 1 In our SeqFace framework, the CNN model is trained on an identity dataset and a sequence dataset, and is supervised jointly by a chief LSR
classification loss and another auxiliary DSA loss. Different sequences can belong to the same identity in sequence data

Beside facial images collected from the Internet, videos
(movies, TVs, surveillance videos, etc.) can also provide large
quantities of face images, but few works utilize these face images
so far because labelling identities is relatively difficult. Face
detection and tracking on videos can automatically generate data
with lots of face sequences, and each sequence contains several
faces of one identity. We call this type of data as sequence data.

A sequence dataset includes M faces of N sequences, and
each face is labeled as the image of the ith (0 ≤ i < N ) sequence.
A large-scale high-quality sequence dataset can be efficiently and
automatically constructed by using state-of-the-art face detec-
tion and tracking methods. Although face sequences are broadly
used in video FR applications, previous works have rarely uti-
lized these unlabelled sequence datasets as the training data
to learn face features, because identity labels cannot be easily
assigned. However, we know that faces in one sequence should
belong to one identity, and it is possible to utilize this feature
to reduce the intra-identity variations while training face feature
CNN models.

In this paper, we propose SeqFace to learn discriminative face
features on both identity data and sequence data (see Figure 1).
SeqFace aims to make full use of sequence data in training. In
SeqFace, a CNN model is jointly supervised by two loss func-
tions. The first one is a chief softmax or angular margin softmax
loss with label smoothing regularization (LSR). The second one
is a discriminative agent (DSA) loss. These two losses can maxi-
mize the inter-identity variations and minimize the intra-identity
variations simultaneously. With the help of sequence data, CNN
models can be trained with high feature discrimination in Seq-
Face.

To summarize, our major contributions are as follows:

1) We present SeqFace to learn discriminative face features.
Besides the traditional identity data, unlabeled sequence data
are used as the training data to enhance the discriminative
power of face features for the first time, since faces in a
sequence should belong to one identity.

2) To make full use of sequence data, we employed the LSR
to help the softmax-like loss to deal with sequence data. A
new DSA loss function, which contributes to the intra-class
compactness and the inter-class dispersion of the features, is
also proposed to train CNNs. Experiments demonstrate that
the LSR and the DSA losses both boost the FR performance
greatly.

3) We conduct experiments on some popular and challeng-
ing FR benchmark datasets with one single ResNet-64, and
these experiments demonstrate that the proposed SeqFace
obtains state-of-the-art performance on these benchmarks.
Section 4 presents some experiments to demonstrate the
performance of SeqFace. Finally, conclusion and discussion
are provided in Section 5.

The paper is organized as follows. In Section 2, we give a
brief introduction of previous works related to the proposed
method. Section 3 provides a detailed description of the pro-
posed SeqFace for learning face features on sequence data.
In Section 4, we analyze the performance of the SeqFace
method on the public datasets. Eventually, Section 5 draws the
conclusions.

2 RELATED WORKS

In this section, we briefly review works of deep face recognition,
and face sequences related works in FR are also introduced.

2.1 Deep face recognition

Deep face recognition is one of the most active field, and has
achieved a series of breakthroughs in recent years thanks to the
great success of CNNs [14–17]. Many methods [3, 4, 13, 18–20]
have proven that CNNs outperform humans in FR on some
benchmark data sets.
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Face features are discriminative if their intra-class compact-
ness and inter-class separability are well maximized. The loss
function should be carefully designed to accomplish this goal.
FR is firstly treated as a multi-class classification problem and
CNN models are supervised by the classical softmax loss in
many methods [3, 4], but the softmax loss cannot fully guar-
antee the above goal in theory. Later, some metric learning
loss functions, such as contrastive loss [10, 11], triplet loss [9,
18] are applied to boost FR performance greatly. However,
well-designed sample mining strategies restrict the application
of these losses. Recently, some angular margin softmax [5, 6,
8] and normalization [7, 21, 22] based methods are proposed
and achieve outperforming performance, since they encourage
larger inter-class and smaller intra-class variance at the same
time, and are constructed on the classical softmax loss func-
tions. Other loss functions [23, 24] based on metric loss also
demonstrate effective performance on FR. Moreover, some
auxiliary loss [25, 26] are employed to train models together with
classification loss functions. Recently, some approaches focus
on hard examples [27] or AutoML searching [28, 29] to get bet-
ter loss functions. Though these loss functions achieve better
and better performance on FR, but they all depend on full-
labeled identity datasets, such as MS-Celeb-1M and Casia, and
cannot treat face sequences as the training data to learn discrim-
inative face features.

2.2 Sequences in face recognition

In many applications, sequences or image sets are the most
natural form of input to the FR system. Video face recognition
methods [30–37] based on face sequences, or face sets, also
are expected to achieve better performance than ones based
on individual images. Most of these studies attempt to utilize
redundant information of face sequences/sets to improve
recognition performance, but not to learn discriminative fea-
tures from sequence data. Recently, some approaches [34,
36–39] aim to learn deep video features for video face recogni-
tion. In [37], large-scale unlabeled face sequences are employed
as the training data, but these sequence data are only utilized
to learn transformations between image and video domains.
[38] trained a self-supervised Siamese network to obtain the
features of a face cluster instead of a single face. [39] also
aims to cluster faces in videos more accurately. To conclude,
learning discriminative face features still depends on traditional
large-scale identity datasets in this deep CNN approaches of
video FR.

3 THE PROPOSED APPROACH

3.1 SeqFace framework

The proposed SeqFace is a framework for learning dis-
criminative face features on identity datasets and sequence
datasets simultaneously.

In the identity dataset, faces of one identity are labeled as
the same IDidentity. In the sequence dataset, faces in one sequence

are labeled as the same IDsequence . Two faces with the differ-
ent IDidentity must belong to different identities, but two faces
with the different IDsequence might (or might not) belong to one
identity. Considering these two datasets together, there are two
circumstances: the identity overlap between these two datasets
exists or does not exist.

SeqFace can deal with these two circumstances. However, in
order to achieve better performance, we encourage to remove
this identity overlap before training, because more constrains
can be added in the loss functions as discussed later. Fortunately,
removing the identity overlap is not a time-consuming task in
many real scenarios. For example, it is almost certain that people
in an Asian street surveillance video will not appear in the MS-
Celeb-1M [12] dataset.

In SeqFace, a CNN model (ResNet-like models in our imple-
mentation) is jointly supervised by one chief classification loss
and one auxiliary loss in SeqFace. The final loss can be formu-
lated as

 = Chie f + 𝜂 Auxiliary, (1)

where 𝜂 is a parameter used to balance two loss functions.
Similar with many methods, we also treat the FR problem as

a classification task to train CNNs, and CNNs are mainly super-
vised by a chief classification loss, such as the Softmax loss, the
A-Softmax loss in SphereFace [8], and so on. However, although
all faces in identity data is labeled as belonging to one class (iden-
tity) in the classification loss, all input faces in sequence data
cannot belong to any class (identity) in the classification loss.
Traditional classification loss cannot deal with sequence data. In
SeqFace, we employ the LSR in the chief classification loss to
solve this problem as discussed in Section 3.2.

We know that faces in one sequence certainly belong to
one identity. Therefore, if a loss encourages the intra-sequence
feature compactness, and does not penalize the inter-sequence
feature compactness, it could supervise CNNs to learn discrim-
inative face features on sequence data, and it could naturally
deal with identity data too. Because this loss mainly affects the
intra-sequence and intra-identity compactness, it has to be an
auxiliary loss. The center loss [25] is such a loss, but it only
concerns the intra-identity and intra-sequence compactness. In
order to make full use of sequence information, a DSA loss
is presented as an auxiliary loss in the SeqFace as discussed in
Section 3.3.

3.2 Label smoothing regularization

The softmax loss is applied to supervise CNNs classification,
and its simplicity and probabilistic interpretation make the soft-
max loss widely adopted in FR issues. The softmax loss is the
combination of a softmax function and a cross-entropy loss, and
the cross-entropy loss is formulated as

S = −
C∑

i=1

log(p(i ))q(i ), (2)
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where C is the class number, p(i ) ∈ [0, 1] is the predicted prob-
ability (the output of the softmax function) of the input belong-
ing to class i, and q(i ) is the ground truth distribution defined
as

q(i ) =

{
0 i ≠ y

1 i = y
, (3)

where y is the ground truth class label of the input.
In FR problem, q(y) should be set to 1 for each face belonging

to the yth identity in identity data. The softmax loss cannot be
directly employed to deal with sequence data because of two
sequences might belong to the same identity. We employ Label
smoothing regularization (LSR) introduced in [40] to deal with
sequence faces in Softmax loss. In the LSR, the value of q(i ) can
be a float value between 0 and 1 for the input which cannot be
clearly labeled as any class.

If the identity overlap does not exists, we define q(i ) = 1∕C

as [41] for faces in sequence data, in order to keep
∑C

i=1 q(i ) = 1
(required in Softmax loss). Since C usually is a large number,
1∕C is close to 0. Furthermore, q(i ) = 1∕C means that the fea-
ture of a face in sequence data cannot be close to features of all
identities in identity data too. Therefore, the cross-entropy loss is
rewritten as

L = −(1 − Z )log(p(y)) −
Z

C

C∑
i=1

log(p(i )), (4)

where Z = 0 for the input face of identity data, and Z = 1 for
the input face of sequence data.

If we are not sure if there is identity overlap, all q(i ) are set
to 0 for all input faces in sequence data, then S is always to
be 0, which is equivalent to all faces in sequence data do not
participate in training at all.

The LSR can also be integrated into other softmax-like classi-
fication loss functions. In our implementation, a feature normal-
ized SphereFace (L2-SphereFace for short in the paper, same
with F-Norm SphereFace in [5]) is applied as the chief classi-
fication loss. An additional L2-constraint is added to the regu-
lar SphereFace [8], it means the input feature x⃗k must be firstly
normalized and scaled by a scalar parameter 𝛿 (𝛿 ⋅ x⃗k∕‖x⃗k‖2).
Therefore, the decision boundaries of the L2-SphereFace under
binary classification is 𝛿(cos m𝜃1 − cos 𝜃2) = 0 for class 1, and
is 𝛿(cos 𝜃1 − cos m𝜃2) = 0 for class 2. In our implementation,
the parameter 𝛿 and the margin m are set to 32.0 and 4, respec-
tively. Experiments in Section 4.2 demonstrate the effectiveness
of LSR.

3.3 DSA loss

In this section, we further propose a new auxiliary loss, namely
discriminative sequence agent loss (DSA Loss), which concerns
the intra-class compactness and the inter-class dispersion, and
deals with sequence data simultaneously.

First, considering the traditional classification problem with
an identity dataset, we define

dk,n =
(x⃗k − c⃗n )2

4
, (5)

as the distance between the feature x⃗k of the kth training sample
and the feature center c⃗n of the nth class(identity), dk,n is actually
equivalent to the Euclidean distance. Note that if x⃗k and c⃗n are
normalized, dk,n can be re-formulated as

dk,n =
(1 − cos𝜃k,n )

2
, (6)

where 𝜃k,n denotes the angle between x⃗k and c⃗n, and dk,n can be
regarded as the angular distance. Since our target is to reduce the
distance between x⃗k and c⃗yk

and enlarge other distances between
x⃗k and c⃗n for all n ≠ yk, where yk is the label of the kth training
sample, a discriminative loss can be formulated as

k,n =

{
dk,n n = yk

max(𝛼 ⋅ dk,yk
− dk,n + 𝛽, 0) n ≠ yk

, (7)

where 𝛼 ∈ [1, +∞) and 𝛽 ∈ [0, +∞) are two parameters to
adjust the discriminative power of the learned features. There-
fore, the final loss function is

D =
1
K

K∑
k=1

⎡⎢⎢⎢⎣𝜆k,yk
+ (1 − 𝜆)

1
(N − 1)p

N∑
n=1
n≠yk

b(1, p)k,n

⎤⎥⎥⎥⎦,
(8)

where the parameter 𝜆 is applied to balance the intra-class
compactness and the inter-class dispersion, N is the number
of identity (class) of the identity dataset. We introduce another
parameter p as the probability that the nth center is employed in
computing the final loss, because N might be a huge number
and it will be time-consuming if all k,n are computed in each
iteration. b(1, p) means the Bernoulli distribution with the
probability p.

The gradients of D with respect to x⃗k and the update equa-
tion of c⃗n, similar with that in the center loss, are computed as:

𝜕D

𝜕x⃗k

=
1
K

[
𝜆

x⃗k − c⃗yk

2
+ (1 − 𝜆)

1
(N − 1)p

N∑
n=1
n≠yk

b(1, p)𝛿(Lk,n > 0)(𝛼
x⃗k − c⃗yk

2
−

x⃗k − c⃗n
2

)

]
,

(9)

and

Δc⃗n = −

∑N

n=1 𝛿(yk = n) ⋅
x⃗k−c⃗n

2

1 +
∑N

n=1 𝛿(yk = n)
, (10)
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where 𝛿(condition) = 1 if the condition is satisfied, and
𝛿(condition) = 0 if not.

According to Equation (8), the feature x⃗k is pulled towards
the feature center c⃗yk

of its identity, and is pushed away from fea-
ture centers of other identities randomly selected in each train-
ing iteration.

3.3.1 DSA for sequence data

Taking into account sequence data, there is a slight modification
in Equation (8) to compute the final DSA loss. We assume that
there are C identities (we label them 0 to C − 1) in the iden-
tity dataset and H sequences (we label them C to C + H − 1)
in the sequence dataset. The discriminative loss (Equation 7) is
reformulated as

k,n =

{
dk,n n = yk

𝛾 ⋅ max(𝛼 ⋅ dk,yk
− dk,n + 𝛽, 0) n ≠ yk

, (11)

where 𝛾 indicates whether the distance between the nth and the
ykth features should be enlarged. If the identity overlap exists
between the identity and sequence datasets, 𝛾 can be set to 1
only when the kth sample is an identity sample and the n < C .
Otherwise, 𝛾 is set to 1.

Moreover, the final loss function (Equation 8) is rewritten as

D =
1
K

K∑
k=1

[
𝜆k,yk

+ ⋅(1 − 𝜆)⋅

(
𝛿

(N − 1)p

N∑
n=1
n≠yk

b(1, p)k,n,

+ ⋅
𝜂

(H − 1)p

C+H∑
n=C
n≠yk

b(1, p)k,n

)]
,

(12)

where 𝛿 and 𝜂 are also Boolean values. If the kth sample is
selected from the identity dataset, 𝛿 and 𝜂 are set to 1. If the
kth sample is selected from the sequence dataset, only 𝛿 is set
to 1. That is to say, if the kth sample is in the identity dataset,
x⃗k should be pushed away from feature centers of other iden-
tities and all sequences, or x⃗k is only pushed away from feature
centers of identities. Figure 2 illustrates two examples.

There are four parameters (𝜆, 𝛼, 𝛽, and p) in the DSA loss
function. The parameter 𝜆 can be set to 0.5 since we concern
both the intra-class compactness and the inter-class dispersion.
The parameters 𝛼 and 𝛽 are used to adjust the discriminative
power of features. Using larger values is preferred, but it will
increase the difficulty of convergence in training. According to
our experiments, 𝛼 = 2.0 and 𝛽 = 1.0 can be applied in most
applications. The parameter p is applied to select part of iden-
tities/sequences while computing k,n, in order to reduce the
computing cost. The value of the parameter p can be set flexibly
based on computing resources in real applications.

FIGURE 2 Illustration of forces on sample features of identity data and
sequence data. The ith sample is from the identity dataset, and the j th one is
from the sequence dataset. c⃗1, c⃗2 and c⃗3 are feature centers of corresponding
identities, and c⃗4 and c⃗5 are feature centers of corresponding sequences. yi = 1
and y j = 5

TABLE 1 Accuracy on MNIST test set

Loss Accuracy

Softmax 98.86%

Softmax + Center 99.06%

Softmax + Euclidean distance DSA 99.17%

Softmax + Angular distance DSA 99.23%

3.3.2 MNIST example

We perform a toy example on the MNIST dataset [42] with
our DSA loss. LeNet++ [25], a deeper and wider version of
LeNet, is employed. The last hidden layer output of the model
is restricted to 2-dimensions for easy visualization (see Figure 3).
For comparison, we train 4 models supervised by a softmax loss,
a softmax loss and a center loss, a softmax loss and a DSA loss,
a softmax loss and a DSA loss (with normalized x⃗k and c⃗n),
respectively. We set 𝜆 = 0.5, 𝛼 = 2.0, 𝛽 = 1.0 and p = 1.0 in
the DSA loss. The loss weight values of the center/DSA loss
are set to 0.04. All models are trained with the batch size of 32.
The learning rate begins with 0.01, and is divided by 10 at 14K
iterations. The training process is finished at 20K iterations. As
shown in Figure 3, the features learned with the DSA loss are
more discriminative. The feature dispersion in Figure 3(b) and
Figure 3(c) demonstrates that the DSA loss can enlarge inter-
class distances, and the feature centers of different classes are
pushed away from each other. Table 1 lists the classification
accuracies of 4 models on MNIST test set. From the results,
we can get the following observations: (1) the center loss and
the DSA loss both improve the classification performance; (2)
as an auxiliary loss, the proposed DSA loss outperforms the
center loss.
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FIGURE 3 Visualization of 2D feature distribution for the MNIST test set. The features of samples from different classes are denoted by the points with
different colors. Four CNNs are supervised by the loss functions of (a) Softmax loss. (b) Softmax loss + Center loss. (c) Softmax loss + DSA loss with Euclidean
distance. (d) Softmax loss + DSA loss with angular distance

4 EXPERIMENT

4.1 Implementation details

In our experiments, all the face images and their landmarks are
detected by MTCNN [43]. The faces are aligned by similar trans-
formation as [44], and are cropped to 144 × 144 RGB images
(randomly cropped to 128 × 128 in training). Each pixel in RGB
images is normalized by subtracting 127.5 then divided by 128.

4.1.1 Training and testing

Caffe [45] is used to implement CNN models. Different CNN
models are employed in the experiments, which will be further
introduced. All weights of the auxiliary losses (𝜂 in Equation 1)
are set to 0.04 in the experiments. Euclidean distances (do not
normalize x⃗k and c⃗n in Equation 5) are applied in the DSA
loss functions used in these section. At the testing stage, only
features of the original image are directly extracted from the
last full connected layer of CNNs, and the cosine similarity is
used to measure the feature distance in the experiments. More

details are presented in the corresponding sections. The code
and model are publicly available at the website1. All verification
accuracies of SeqFace are calculated by averaging the results of
5 trained models.

4.2 Exploration experiment

In this section, the employed CNN is a ResNet-20 network
which is similar to [8], and it is trained on the publicly avail-
able CASIA-WebFace dataset [11] containing about 0.5M faces
from 10,575 identities. All models are trained with the batch size
of 32 on one Titanx GPU. The learning rate begins with 0.01,
and is divided by 10 at 200K iterations. The training process is
finished at 300K iterations.

Because there is no public FR training dataset containing
sequence data, we employ CASIA-WebFace to generate one in
order to facilitate to reproduction and comparison. To evaluate
the effectiveness of sequence data, 10,575 identities in the
CASIA-WebFace dataset are randomly divided into two parts:

1 https://github.com/huangyangyu/SeqFace

https://github.com/huangyangyu/SeqFace
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TABLE 2 Face verification accuracy on LFW dataset

Model Loss Training Dataset Accuracy

I Softmax Dataset A 95.12%

II L2-SphereFace Dataset A 97.35%

III L2-SphereFace + Center loss Dataset A 97.45%

IV L2-SphereFace + DSA loss Dataset A 98.25%

V LSR-L2-SphereFace Dataset A + B 97.57%

VI LSR-L2-SphereFace + DSA loss Dataset A + B 98.85%

VII L2-SphereFace CASIA-WebFace 99.03%

the dataset A (5,000 identities) and the dataset B(5,575 identi-
ties). Faces in the dataset B is then randomly split into 32,996
sequences. The dataset A and B are treated as the identity
dataset and the sequence dataset respectively. It is clear that
the CASIA-WebFace dataset contains full annotations and the
dataset A+B only contains part annotations of 10,575 identities.
To demonstrate the effectiveness of LSR and DSA loss on the
dataset with part anotations, we train 7 models (see Table 2) for
comparison.

First, we use a regular softmax loss (Model I), a L2-
SphereFace loss (Model II) to train 2 CNN models respectively.
Only the dataset A is used as the training dataset. Verification
accuracies demonstrate that the L2-SphereFace greatly boosts
the performance.

Then, the center loss and our DSA loss are applied as the
auxiliary loss to jointly supervise the CNN models (Model III
and Model IV, respectively) with a L2-Sphere loss. The reported
results demonstrate that two auxiliary loss functions have pos-
itive effect on the FR performance, and our DSA loss outper-
forms the center loss.

Moreover, sequence data (the dataset B) are added to train
the CNN model supervised by a LSR-based L2-SphereFace
(Model V). According to results, we can conclude that LSR also
plays a positive role in training. LSR and DSA loss then work
together to train a CNN model (Model VI), and we can have fol-
lowing observation: our SeqFace greatly enhances the discrimi-
native power of learned features.

Last, we also train a model (Model VII) on total CASIA-
WebFace with a L2-SphereFace loss. Comparing accuracies
between the Model V and VI, we can conclude that com-
plete identity annotation is naturally preferred in training
datasets, but the little gap shows that competitive perfor-
mance also can be achieved by making full use of sequence
information.

4.3 Evaluation on public benchmarks

In this section, we evaluate the proposed SeqFace on several
public benchmarks, including Labelled Faces in the Wild (LFW)
[46], YouTube Faces (YTF) [47], Celebrities in Frontal Profile
(CFP) [48], Age Database (AgeDB) [49], and MegaFace Chal-
lenge [50].

A ResNet-27 model2(the architecture is shown in Figure 4)
and a ResNet-64 [8] are employed for evaluation. To acceler-
ate the training process, we first train a baseline model under
the supervision of the regular L2-SphereFace on the identity
dataset only, and then fine-tune the baseline model by using the
SeqFace. Our models are trained with batch size of 128 on 4
Titanx GPU. The learning rate begins with 0.01, and is divided
by 10 at 300K and 600K iterations. The training is finished at
800K iterations. The models are jointly supervised by a LSR-
L2-SphereFace loss and a DSA loss, and are learned on the MS-
Celeb-1M and our Celeb-Seq datasets described below. In the
DSA loss, 𝜆 = 0.5, 𝛼 = 2.0, 𝛽 = 1.0. The parameter p is set to
0.001 because of the large number of sequences in the Celeb-
Seq dataset.

4.3.1 Training datasets

A refined MS-Celeb-1M (4M images and 79K identities) pro-
vided by [44] is used as the identity dataset. Since there is no
public sequence datasets for training deep CNNs, we first con-
struct a sequence dataset Celeb-Seq-Overlap, which includes
about 2.5M face images of 550K face sequences. We firstly
extract about 800K face sequences by using MTCNN [43] and
Kalman-Consensus Filter (KCF) [51] to detect and track video
faces from 32 online TV Channels, then compute image fea-
tures with the model provided by SphereFace [8]. Noisy faces,
and nearly duplicate faces in one sequence are discarded from
the dataset automatically. In Celeb-Seq-Overlap, some celebri-
ties can be found in MS-Celeb-1M. Faces of overlap identi-
ties with MS-Celeb-1M are then removed to generate another
dataset Celeb-Seq. We also remove face images belong to iden-
tities that appear in the LFW and YTF test sets. Some face
sequences in the Celeb-Seq dataset are shown in Figure 5.

4.3.2 Evaluation on LFW and YTF

LFW [46] and YTF [47] are challenging testing benchmarks
released for face verification. LFW dataset contains 13,233 faces
of 5749 different identities, with large variations in pose, expres-
sion and illuminations. YTF dataset includes 3425 videos of
1595 identities. We follow the unrestricted with labeled out-
side data protocol. To evaluate performance on YTF, the simple
average feature of all faces in a video is applied to compute the
final score.

Table 3 reports the verification performance of several meth-
ods and some commercial systems. To demonstrate effective-
ness of the SeqFace, the performance of our baseline ResNet-27
is also reported in the table. The SeqFace achieves the highest
accuracies on these two benchmarks, even compared with
other commercial systems. Note that the ArcFace employs the
improved ResNets [52]. It is reported in the ArcFace that a regu-
lar 50-layer ResNet achieves a 99.71% accuracy on LFW. More-
over, our ResNet-27 and ResNet-64 models achieve 99.50% and

2 https://github.com/ydwen/caffe-face

https://github.com/ydwen/caffe-face
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FIGURE 4 The ResNet-27 architecture for the experiments. The CNN is jointly supervised by the LSR-L2-SphereFace and the DSA loss. ID denotes the input
identity data, SEQ denotes the input sequence data, C denotes the convolution layer, P denotes the max-pooling layer, and FC denotes the fully connected layer

FIGURE 5 Some face sequences in the Celeb-Seq dataset. All faces are aligned and cropped to 144 × 144. Some sequences belong to the same identity (two
sequences at top-right corner). Note that the numbers of faces in the sequences are different from each other

TABLE 3 Verification accuracies(%) of different methods on LFW and YTF. Accuracies of some commercial systems are cited from the LFW website. Note
that the ResNet models in the ArcFace use the improved residual units [52], and the training MS-Celeb-1M dataset used in the ArcFace contains 3.8M images and
85K identities

Method Models Data LFW YTF

Dahua-FaceImage 30 2M images 99.78 -

YouTu Lab, Tencent 3 2M images 99.80 -

Baidu 9 1.2M images 99.77 -

Face++ 4 2M images 99.50 -

ReadSence 4 4M images 99.82 -

YI+AI 1 2M images 99.83 -

DeepFace [3] 3 4M images 97.35 91.4

DeepID2+ [20] 1 300K images 98.70 -

DeepID2+ [20] 25 300K images 99.47 93.2

DeepID3 [19] 25 300K images 99.53 -

FaceNet [18] 1 200M images 99.65 95.1

Center Face [25] 1 0.7M images 99.28 94.9

SphereFace [8] 1 ResNet-64 CASIA-Webface 99.42 95.0

CosFace [6] 1 ResNet-64 5M images 99.73 97.6

ArcFace [5] 1 ResNet-50 MS-Celeb-1M 99.78 -

ArcFace [5] 1 ResNet-100 MS-Celeb-1M 99.83 98.02

L2-SphereFace 1 ResNet-27 MS-Celeb-1M 99.55 95.7

SeqFace 1 ResNet-27 MS-Celeb-1M + Celeb-Seq-Overlap 99.67 97.15

SeqFace 1 ResNet-27 MS-Celeb-1M + Celeb-Seq 99.83 98.12

SeqFace 1 ResNet-64 MS-Celeb-1M + Celeb-Seq 99.87 98.26
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FIGURE 6 LFW errors. This shows all eight pairs of images that were
incorrectly classified on LFW by using our ResNet-64 model. All pairs are
False Reject cases

99.67% at VR@FAR=0 on LFW. The models will be publicly
accessed online in near future. Figure 6 gives an overview of all
failure cases of our ResNet-64 model. The results also prove
that identity overlap between sequence data and identity data
should be removed to achieve better performance.

The SeqFace is only a framework to make use of sequence
data. We believe that new loss functions and modern networks
(such as a deeper ResNet with improved residual units [52])
can be employed in the SeqFace to further improve the perfor-
mance.

4.3.3 Evaluation on CFP and AgeDB

There are 500 identities, each with 10 frontal and 4 profile
images, in CFP dataset [48]. In this paper, we use the most
challenging subset CFP-FP, which includes 10 folders with 350
same-person pairs and 350 different-person pairs, to demon-
strate our performance. AgeDB dataset [49] contains 12,240
images of 440 identities. There are four groups of test data with
different year gaps, and we also use the most challenging sub-
set AgeDB-30, which includes ten split of face images and each
split contains 300 positive examples and 300 negative examples,
to demonstrate our performance.

Table 4 reports the verification performance of several recent
methods. The SeqFace also achieves the highest accuracies on
these two benchmarks.

4.3.4 Evaluation on megaface

MegaFace [50] is a challenging testing benchmark to evaluate
the performance of FR methods at the million scale. It includes

TABLE 4 Verification accuracies(%) of different methods on CFP and
AgeDB. The ResNet models in the ArcFace use the improved residual units
[52]

Method Models Data CFP AgeDB-30

SphereFace [8] ResNet-100 MS-Celeb-1M 93.7 97.56

ArcFace [5] ResNet-100 MS-Celeb-1M 94.5 98.0

SeqFace ResNet-27 MS-Celeb-1M + Celeb-Seq 96.17 97.45

SeqFace ResNet-64 MS-Celeb-1M + Celeb-Seq 97.03 97.9

TABLE 5 Performance (%) comparison with other methods on
MegaFace on rank1 identification accuracy with 1 million dstractors. (C)
denotes the cleaned version of MegaFace dataset [5]

Method Models Rank1 Rank1(C)

CosFace [6] ResNet-64 82.72 96.65

ArcFace [5] ResNet-50 82.55 98.06

ArcFace [5] ResNet-100 83.27 98.36

SeqFace ResNet-27 84.43 96.84

SeqFace ResNet-64 85.29 98.71

a probe set and a gallery set. The gallery set consists of more
than 1 million images from 690K different identities. The probe
sets consists of two datasets: Facescrub and FGNet. We eval-
uate the model on one of the three gallery set (set 1) with the
provided code3 for both face identification and verification pro-
tocols. Table 5 shows that our models achieve competitive per-
formance on MegaFace benchmark. For fair comparison with
other methods, the features of FaceScrub are extracted directly
from the faces with land marks provided by MegaFace. More-
over, since removing noisy images in the MegaFace can dra-
matically improve the identification performance (from 82%
to 98% in [5]), we report the performance of our models on
the original and cleaned versions of MegaFace dataset. The
results in Table 5 demonstrate that the SeqFace is a competitive
method.

5 CONCLUSION

A large-scale high-quality dataset for training CNNs in FR is
very expensive to construct. Face features learned on publicly
available datasets for researchers might not achieve satisfied per-
formance in some circumstances, for example, evaluating Asian
people in surveillance videos. Though large amount of face
images in the real situation can be collected, assigning labels to
these images is still time-consuming. Fortunately, a dataset con-
taining large amount of face sequences can be efficiently con-
structed by using face detection and tracking methods.

In this paper, we proposed a framework named SeqFace,
which can utilize identity and sequence data together to learn
highly discriminative face features. A chief classification loss and

3 http://megaface.cs.washington.edu/participate/challenge.html

http://megaface.cs.washington.edu/participate/challenge.html
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another auxiliary loss are combined to learn features of these
two types of datasets. The LSR is employed to help the chief
loss to deal with sequence input. The DSA loss was also pro-
posed to supervise CNNs as an auxiliary loss. We achieved good
results on several popular face benchmarks only with a sim-
ple ResNet model. We also believe that higher performance can
be obtained, if more advanced loss functions ([5, 6]) and CNN
architectures [52] are employed.

Compared with other face feature learning approaches,
besides the traditional identity data, SeqFace can additionally
employ face sequences to learn discriminative face features.
As far as we know, SeqFace is the first framework to employ
face sequences as training data to learn face features. Although
identity-overlap between identity and sequence data is prohib-
ited in SeqFace, avoiding such overlap is not a time-consuming
task in many real scenarios as discussed in Section 4. Solving this
limitation is also our future work. Moreover, it is obvious that
SeqFace also has great potential to be applied in other similar
fields, such as Person-reidentification.
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